Click here to sign in with or
Forget Password?
Learn more
share this!
114
25
Share
Email
August 5, 2022
by US Department of Energy
Ultrafast pulses from X-ray lasers reveal how atoms move at timescales of a femtosecond. That’s a quadrillionth of a second. However, measuring the properties of the pulses themselves is challenging. While determining a pulse’s maximum strength, or ‘amplitude,’ is straightforward, the time at which the pulse reaches the maximum, or ‘phase,’ is often hidden. A new study trains neural networks to analyze the pulse to reveal these hidden sub-components. Physicists also call these sub-components ‘real’ and ‘imaginary.’ Starting from low-resolution measurements, the neural networks reveal finer details with each pulse, and they can analyze pulses millions of times faster than previous methods.
The new analysis method is up to three times more accurate and millions of times faster than existing methods. Knowing the components of each X-ray pulse leads to better, crisper data. This will expand the science possible using ultrafast X-ray lasers, including fundamental research in chemistry, physics, and materials science and applications in fields such as quantum computing. For example, the additional pulse information could enable simpler and higher-resolution time-resolved experiments, reveal new areas of physics, and open the door to new investigations of quantum mechanics. The neural network approach used here could also have broad applications in X-ray and accelerator science, including learning the shape of proteins or the properties of an electron beam.
Characterizations of system dynamics are important applications for X-ray free-electron lasers (XFELs), but measuring the time-domain properties of the X-ray pulses used in those experiments is a long-standing challenge. Diagnosing the properties of each individual XFEL pulse could enable a new class of simpler and potentially higher-resolution dynamics experiments. This research by scientists from SLAC National Accelerator Laboratory and the Deutsches Elektronen-Synchrotron is a step toward that goal. The new approach trains neural networks, a form of machine learning, to combine low-resolution measurements in both the time and frequency domains and recover the properties of X-ray pulses at high resolution. The model-based ‘physics-informed’ neural-network architecture can be trained directly on unlabeled experimental data and is fast enough for real-time analysis on the new generation of megahertz XFELs. Critically, the method also recovers the phase, opening the door to coherent-control experiments with XFELs, shaping the intricate motion of electrons in molecules and condensed-matter systems.
The research was published in Optics Express.
Explore further
Machine learning paves the way for smarter particle accelerators
Explore further
Facebook
Twitter
Email
Feedback to editors
Aug 19, 2022
1
Aug 19, 2022
2
Aug 18, 2022
1
Aug 18, 2022
0
Aug 18, 2022
0
21 hours ago
Aug 20, 2022
Aug 20, 2022
Aug 20, 2022
Aug 19, 2022
Aug 19, 2022
Aug 19, 2022
14 hours ago
17 hours ago
17 hours ago
Aug 20, 2022
Aug 18, 2022
Aug 15, 2022
More from Other Physics Topics
Jul 19, 2022
Mar 03, 2021
Mar 24, 2021
Sep 04, 2018
Jan 19, 2021
Feb 19, 2021
Aug 19, 2022
Aug 19, 2022
Aug 18, 2022
Aug 18, 2022
Aug 16, 2022
Aug 10, 2022
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we’ll never share your details to third parties.
More information Privacy policy
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.