Click here to sign in with or
Forget Password?
Learn more
share this!
14
41
Share
Email
March 27, 2023
This article has been reviewed according to Science X’s editorial process and policies. Editors have highlighted the following attributes while ensuring the content’s credibility:
fact-checked
peer-reviewed publication
trusted source
proofread
by RIKEN
The rapid spread of COVID-19 may have been partly due to changes in the structure of the SARS-CoV-2 virus wrought by an early mutation in its genome, a detailed analysis by RIKEN researchers suggests. The finding, published in the Biophysical Journal, could help inform the development of next-generation vaccines and antiviral drugs.
Alpha, delta, omicron and other variants of concern have been making news throughout the COVID-19 pandemic. But the most significant mutation may have occurred in the early days of the pandemic, and it might have enabled the virus to spread so rapidly.
Yuji Sugita of the RIKEN Center for Computational Science (R-CCS) and Hisham Dokainish, who was at R-CCS at the time of the study, investigated the effect of mutations on viral structure. They did this by simulating the atomic positions of molecules found in different forms of the virus’s important spike protein—a tool coronaviruses use to bind and enter human cells.
They found that the substitution of a single amino acid altered this protein’s shape, helping SARS-CoV-2 to adapt to human hosts. This finding demonstrates how even tiny mutations—swapping a single amino acid in this case—can greatly affect protein dynamics.
To understand why the mutation proved so advantageous to the virus, the pair ran detailed simulations of the protein’s structure and stability. Their analysis—done using the RIKEN Fugaku supercomputer, one of the fastest in the world—revealed how the mutation (known as D614G) breaks an ionic bond with a second subunit of the Spike protein. It also changes the shape of a nearby loop structure, which alters the orientation of the entire protein, locking it into a form that makes it easier for the virus to enter cells.
“A single and local change in an interaction within the molecule caused by a single mutation could affect the global structure of the spike protein,” explains Sugita, who is additionally affiliated with the RIKEN Center for Biosystems Dynamics Research. The resulting mutant proved better at replicating and transmitting between human hosts, and the D614G lineage quickly outcompeted its ancestral lineages and spread across the globe. It remains a fixture of every dominant variant that has followed.
Sugita’s team is now performing similar investigations of adaptive viral mutations that arose later in the course of the pandemic, including those found in the omicron variant.
“Information obtained from our molecular dynamics simulations should help increase the opportunities for us to find effective drugs and other medicines,” he says.
More information: Hisham M. Dokainish et al, Structural effects of spike protein D614G mutation in SARS-CoV-2, Biophysical Journal (2022). DOI: 10.1016/j.bpj.2022.11.025
Journal information: Biophysical Journal
Provided by RIKEN
More information: Hisham M. Dokainish et al, Structural effects of spike protein D614G mutation in SARS-CoV-2, Biophysical Journal (2022). DOI: 10.1016/j.bpj.2022.11.025
Journal information: Biophysical Journal
Journal information: Biophysical Journal
Provided by RIKEN
Explore further
Facebook
Twitter
Email
Feedback to editors
7 hours ago
0
8 hours ago
0
10 hours ago
0
Sep 25, 2023
5
Sep 25, 2023
3
15 minutes ago
21 minutes ago
39 minutes ago
43 minutes ago
2 hours ago
4 hours ago
4 hours ago
4 hours ago
5 hours ago
5 hours ago
Jan 12, 2023
Feb 8, 2023
Mar 24, 2021
Aug 8, 2022
Sep 17, 2021
Jan 20, 2022
12 hours ago
8 hours ago
8 hours ago
Sep 25, 2023
Sep 25, 2023
Sep 25, 2023
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we’ll never share your details to third parties.
More information Privacy policy
We keep our content available to everyone. Consider supporting Science X’s mission by getting a premium account.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.