By
SARS-CoV-2 lineage EG.5.1 has an advantage at evading neutralizing antibodies.
When vaccinated or infected, our immune system creates antibodies that target the spike protein of Since May 2023, the EG.5 lineage of SARS-CoV-2, known as Eris, has been spreading globally and was classified as a “Variant of Interest” by the World Health Organization (WHO) in early August. However, the cause of the increasing spread of Eris has been unclear.
Scientists from the German Primate Center – Leibniz Institute for Primate Research in Göttingen have now examined the characteristics of the Eris sublineage EG.5.1.
The researchers found that EG.5.1 is not more infectious than its predecessors, meaning it cannot infect host cells more effectively. However, EG.5.1 can escape neutralizing antibodies better than other currently circulating SARS-CoV-2 lineages, giving it an advantage in infecting individuals whose immune systems have produced neutralizing antibodies after vaccination or infection.
After exhausting years of the pandemic with multiple waves of infections caused by ever-changing virus variants and corresponding hospitalization rates, the situation has significantly improved by now. Large waves of infections outside the cold and wet seasons are not occurring. This success is largely attributed to the rapid development of vaccines.
Many people have been immunized against SARS-CoV-2. Booster vaccinations with adapted vaccines, known as booster shots, as well as infections in vaccinated individuals with currently circulating virus variants, have further trained our immune system so that it can also counter newly emerging virus variants.
Virus variants: Spike protein mutations can ‘shake off’ neutralizing antibodies and increase infectivity
A part of our immune protection relies on neutralizing antibodies that are produced by the cells of our immune system after vaccination or infection. Neutralizing antibodies attach to the spike protein of SARS-CoV-2, preventing the virus from entering into our cells. This mechanism is also referred to as neutralization.
However, even with neutralizing antibodies, a 100 percent protection against a SARS-CoV-2 infection is not guaranteed because SARS-CoV-2 can still change. This leads to the emergence of mutated virus variants that can gain the ability to partially evade neutralizing antibodies.
This process is also known as antibody escape and is based on mutations in the spike protein that make it less optimal for neutralizing antibodies to bind.
“Furthermore, mutations can enhance the transmissibility of SARS-CoV-2 variants by, for example, improving the binding of the spike protein to the cellular receptor ACE2,” says Markus Hoffmann, the leading scientist behind the study.
Mutations in the spike protein of the Eris sublineage EG.5.1 increase the ability to evade neutralizing antibodies
Since May 2023, the SARS-CoV-2 lineage EG.5, including its descendant EG.5.1, has been on the rise in many countries. The lineage, classified as a “Variant of Interest” by the World Health Organization (WHO), is also referred to as Eris, named after the Greek goddess of chaos and discord. While this name may sound dangerous, there is currently no evidence to suggest that infections with EG.5 and EG.5.1 are leading to more severe illnesses.
However, it is still unclear what is causing the increasing spread of EG.5 and EG.5.1. A team of scientists from the German Primate Center – Leibniz Institute for Primate Research in Göttingen, the Hannover Medical School, and Friedrich-Alexander University Erlangen-Nuremberg has investigated the Eris sublineage EG.5.1. “We have found evidence that an increased ability to escape from antibodies is the likely cause for the enhanced spread of Eris,” says Markus Hoffmann.
“We tested how effectively the Eris sublineage EG.5.1 can enter host cells and how efficiently it is neutralized by antibodies in the blood of vaccinated individuals without a SARS-CoV-2 infection and those with a SARS-CoV-2 infection. During this process, we found that, in comparison to other currently circulating SARS-CoV-2 lineages, EG.5.1 does not possess an advantage in infecting host cells.
However, further investigations revealed that EG.5.1 is less effectively neutralized by antibodies present in the blood of vaccinated individuals or vaccinated and infected individuals,” explains Lu Zhang, the lead author of the study. The experiments were conducted using replication-incompetent viruses produced in the laboratory, known as pseudoviruses, for safety reasons.
“In summary, our results suggest that the spread of EG.5 and its sublineages primarily relies on antibody escape rather than an enhanced ability to infect host cells. However, the increase in the ability to escape antibodies is rather moderate and by no means sufficient to completely undermine our immunity that has been established through vaccination or prior infection,” comments Markus Hoffmann on the outcome of the study.
Adapted vaccines based on the SARS-CoV-2 XBB.1.5 lineage should also be effective against EG.5 and its sublineages
In the autumn of this year, newly adapted SARS-CoV-2/DOI: 10.1016/S1473-3099(23)00547-9
Research indicates that the newly emerged Eris lineage (including EG.5 and EG.5.1) of SARS-CoV-2, characterized by moderate antibody escape capabilities, is responsible for its increasing spread; however, the forthcoming vaccines based on the XBB.1.5 lineage are anticipated to be effective against it. The severity of illnesses caused by these variants remains unchanged.
When vaccinated or infected, our immune system creates antibodies that target the spike protein of Since May 2023, the EG.5 lineage of SARS-CoV-2, known as Eris, has been spreading globally and was classified as a “Variant of Interest” by the World Health Organization (WHO) in early August. However, the cause of the increasing spread of Eris has been unclear.
Scientists from the German Primate Center – Leibniz Institute for Primate Research in Göttingen have now examined the characteristics of the Eris sublineage EG.5.1.
The researchers found that EG.5.1 is not more infectious than its predecessors, meaning it cannot infect host cells more effectively. However, EG.5.1 can escape neutralizing antibodies better than other currently circulating SARS-CoV-2 lineages, giving it an advantage in infecting individuals whose immune systems have produced neutralizing antibodies after vaccination or infection.
After exhausting years of the pandemic with multiple waves of infections caused by ever-changing virus variants and corresponding hospitalization rates, the situation has significantly improved by now. Large waves of infections outside the cold and wet seasons are not occurring. This success is largely attributed to the rapid development of vaccines.
Many people have been immunized against SARS-CoV-2. Booster vaccinations with adapted vaccines, known as booster shots, as well as infections in vaccinated individuals with currently circulating virus variants, have further trained our immune system so that it can also counter newly emerging virus variants.
Virus variants: Spike protein mutations can ‘shake off’ neutralizing antibodies and increase infectivity
Lu Zhang, PhD student at the German Primate Center – Leibniz Institute for Primate Research. Credit: Karin Tilch
A part of our immune protection relies on neutralizing antibodies that are produced by the cells of our immune system after vaccination or infection. Neutralizing antibodies attach to the spike protein of SARS-CoV-2, preventing the virus from entering into our cells. This mechanism is also referred to as neutralization.
However, even with neutralizing antibodies, a 100 percent protection against a SARS-CoV-2 infection is not guaranteed because SARS-CoV-2 can still change. This leads to the emergence of mutated virus variants that can gain the ability to partially evade neutralizing antibodies.
This process is also known as antibody escape and is based on mutations in the spike protein that make it less optimal for neutralizing antibodies to bind.
Work at the Infection Biology Unit of the German Primate Center – Leibniz Institute for Primate Research. Credit: Heike Hofmann-Winkler
“Furthermore, mutations can enhance the transmissibility of SARS-CoV-2 variants by, for example, improving the binding of the spike protein to the cellular receptor ACE2,” says Markus Hoffmann, the leading scientist behind the study.
Mutations in the spike protein of the Eris sublineage EG.5.1 increase the ability to evade neutralizing antibodies
Since May 2023, the SARS-CoV-2 lineage EG.5, including its descendant EG.5.1, has been on the rise in many countries. The lineage, classified as a “Variant of Interest” by the World Health Organization (WHO), is also referred to as Eris, named after the Greek goddess of chaos and discord. While this name may sound dangerous, there is currently no evidence to suggest that infections with EG.5 and EG.5.1 are leading to more severe illnesses.
However, it is still unclear what is causing the increasing spread of EG.5 and EG.5.1. A team of scientists from the German Primate Center – Leibniz Institute for Primate Research in Göttingen, the Hannover Medical School, and Friedrich-Alexander University Erlangen-Nuremberg has investigated the Eris sublineage EG.5.1. “We have found evidence that an increased ability to escape from antibodies is the likely cause for the enhanced spread of Eris,” says Markus Hoffmann.
“We tested how effectively the Eris sublineage EG.5.1 can enter host cells and how efficiently it is neutralized by antibodies in the blood of vaccinated individuals without a SARS-CoV-2 infection and those with a SARS-CoV-2 infection. During this process, we found that, in comparison to other currently circulating SARS-CoV-2 lineages, EG.5.1 does not possess an advantage in infecting host cells.
Infection biologist Dr. Markus Hoffmann (left) and Prof. Dr. Stefan Pöhlmann, Head of the Infection Biology Unit at the German Primate Center (DPZ) – Leibniz Institute for Primate Research. Credit: Karin Tilch
However, further investigations revealed that EG.5.1 is less effectively neutralized by antibodies present in the blood of vaccinated individuals or vaccinated and infected individuals,” explains Lu Zhang, the lead author of the study. The experiments were conducted using replication-incompetent viruses produced in the laboratory, known as pseudoviruses, for safety reasons.
“In summary, our results suggest that the spread of EG.5 and its sublineages primarily relies on antibody escape rather than an enhanced ability to infect host cells. However, the increase in the ability to escape antibodies is rather moderate and by no means sufficient to completely undermine our immunity that has been established through vaccination or prior infection,” comments Markus Hoffmann on the outcome of the study.
Adapted vaccines based on the SARS-CoV-2 XBB.1.5 lineage should also be effective against EG.5 and its sublineages
In the autumn of this year, newly adapted SARS-CoV-2/DOI: 10.1016/S1473-3099(23)00547-9
Chemistry
Detecting Neutralizing Antibodies for COVID-19: A Novel Technique Uncovered by MIT Chemists
Beyond Omicron: Scientists Set Sights on Long Game of COVID Evolution
Arcturus, Omicron’s Offspring: Understanding the New COVID Variant XBB.1.16
Caltech’s Nanoparticle Vaccine Protects Against a Wide Range of COVID-19-Causing Variants and Related Viruses
Why Omicron Is Different – New Study Helps Explain SARS-CoV-2 Variants’ Rapid Spread
“This Virus Is a Shape-Shifter!” – New Research Details How COVID Variants Are Evolving New Ways To Evade Vaccines
Advanced Light Source X-Ray Experiments Zero In on COVID-19 Antibodies
Potent Neutralizing Antibodies Isolated From COVID-19 Patients – Could Be Mass-Produced to Suppress Virus
Email address is optional. If provided, your email will not be published or shared.
SciTechDaily: Home of the best science and technology news since 1998. Keep up with the latest scitech news via email or social media.
> Subscribe Free to Email Digest
September 24, 2023
Brainless Brilliance: Jellyfish Stun Scientists With Learning Skills
Jellyfish Learning Abilities: Challenging Neuroscientific Notions Even without a central brain, jellyfish can learn from past experiences like humans, mice, and flies, scientists report for…
Jellyfish Learning Abilities: Challenging Neuroscientific Notions Even without a central brain, jellyfish can learn from past experiences like humans, mice, and flies, scientists report for…
September 24, 2023
Scientists Successfully Genetically Modify Individual Cells in Living Animals
September 23, 2023
Fly Fitness: How the Iditarod Protein Connects Exercise Endurance, Cold Resistance & Cell Repair
September 23, 2023
6x Tougher Than Kevlar: Spider Silk Is Spun by Genetically Modified Silkworms for the First Time
September 23, 2023
Alarming Global Cancer Surge: 79% Rise in Cancer Cases Among Those Under 50
September 23, 2023
Thinner Than the Photon Itself – Scientists Invent Smallest Known Way To Guide Light
September 23, 2023
Cambridge Researchers Discover New Way To Measure Dark Energy
September 23, 2023
Life on Jupiter’s Moon? NASA’s Webb Finds Carbon Source on Surface of Europa
Copyright © 1998 – 2023 SciTechDaily. All Rights Reserved.